Repeated Prescribed Fires Favor Oak Regeneration in Canopy Gaps

Todd Hutchinson USDA Forest Service Northern Research Station

Collaborators

- Elaine Kennedy Sutherland, USFS, RMRS
- Robert Long, USFS, NRS
- Joanne Rebbeck, USFS, NRS
- Daniel Yaussy, USFS, NRS

Field crew, circa 1995

Oak regeneration across the landscape

- Intrinsic accumulation
 - Low moisture/nutrient availability
 - Upper slopes, S-aspect
 - Site index <60</p>
- Recalcitrant accumulation
 - High moisture/nutrient availability
 - Middle-lower slopes, Naspect
 - Site index >70

Johnson et al. 2009. Ecology and Silviculture of Oak;

Ohio Physiographic Regions

Ohio Forest Cover, 1994

The Oak Regeneration Problem, Ohio

Ohio, FIA 2006

Widmann et al. 2009

Southern Ohio Forests, ca. 1800

us alba spp.	1878	(33%)	18 (3 – 60)	22
spp.	770			
	119	(14%)	12 (1 – 36)	23
us velutina + coccinea	658	(12%)	18 (2 - 96)	25
grandifolia	572	(10%)	12 (3 - 50)	20
accharum	254	(4%)	12 (3 – 32)	20
sylvatica	197	(3%)	10 (3 – 30)	17
ıbrum	193	(3%)	12 (4 – 24)	19
endron tulipifera	158	(3%)	14 (5 – 48)	18
s florida	149	(3%)	5 (2-12)	15
spp.	111	(2%)	12 (3 – 48)	20
nea dentata	106	(2%)	18 (3 – 60)	29
us prinus	89	(2%)	14 (3 – 36)	21
	spp. Is velutina + coccinea grandifolia accharum sylvatica Ibrum andron tulipifera florida spp. ea dentata us prinus	spp. 779 Is velutina + coccinea 658 grandifolia 572 accharum 254 sylvatica 197 Jbrum 193 endron tulipifera 158 s florida 149 spp. 111 nea dentata 106 us prinus 89 Witness	spp. 779 (14%) is velutina + coccinea 658 (12%) grandifolia 572 (10%) accharum 254 (4%) sylvatica 197 (3%) ubrum 193 (3%) endron tulipifera 158 (3%) spp. 111 (2%) nea dentata 106 (2%) witness trees five 89 (2%)	spp. $779 (14\%)$ $12 (1 - 36)$ is velutina + coccinea $658 (12\%)$ $18 (2 - 96)$ grandifolia $572 (10\%)$ $12 (3 - 50)$ accharum $254 (4\%)$ $12 (3 - 32)$ sylvatica $197 (3\%)$ $10 (3 - 30)$ ubrum $193 (3\%)$ $12 (4 - 24)$ endron tulipifera $158 (3\%)$ $14 (5 - 48)$ s florida $149 (3\%)$ $5 (2 - 12)$ spp. $111 (2\%)$ $12 (3 - 48)$ nea dentata $106 (2\%)$ $18 (3 - 60)$ us prinus $89 (2\%)$ $14 (3 - 36)$

Witness trees, five counties (n = 5696)

Ecosystem Management Study, 1995

Oak (and hickory) fire adaptations

- Trees
 - Thick bark
 - Wound compartmentalization
- Seedlings
 - Root-centered growth
 - Location of dormant buds
 - Re-sprouting capacity

Hypotheses: Forest Structure and Tree Regeneration

Repeated low-intensity fires will:

- Reduce the density of midstory and understory trees, which are predominately non-oaks
- 2. Increase the competitive status of oak regeneration due to their sprouting capacity and increased light to the forest floor

Study Site: Vinton Furnace State Experimental Forest (VFSEF)

Study site: VFSEF

Score 0-10 11-20 21-30 31-40 41-50 61-70 71-80 81-90 91-100 🕅 Streams 🕅 Roads

Integrated Moisture Index Draped on Vinton Terrain

Fire History, Vinton Furnace Exp. Forest

Fire History, Vinton Furnace Exp. Forest

Hutchinson et al. Can. J. For. Res. 2008-

000

Forest Composition

- Overstory
 - White oak, Quercus alba
 - Chestnut oak, Quercus montana
 - Black oak, Quercus velutina
 - Hickories, Carya spp.
 - Scarlet oak, Quercus coccinea
 - Yellow poplar, Liriodendron tulipifera
- Understory
 - Red maple, Acer rubrum
 - Sugar maple, Acer saccharum
 - Blackgum, Nyssa sylvatica
 - Beech, Fagus grandifolia
 - Sourwood, Oxydendrum arboreum

Study Design

Forest Composition, year 0

This was another study.....

Overstory trees >10" DBH

Midstory trees 4-10" DBH

Saplings 1-4" DBH

Midstory mortality, year 13 Trees 4 – 10" DBH

3)

<u>Species</u>	"Fire" mor	tality.
Red maple	43%	(49 - 6)
White oak	21%	(67 - 46)
Hickory	17%	(26 - 9)
Yellow popl	lar 7%	(23 - 16)
Blackgum	6%	(9-3)
Chestnut oa	ak 2%	(15 – 13

Canopy Openness

Small saplings (4.5' tall to 1" DBH) Dry sites

Small saplings (4.5' tall to 1" DBH) Mesic sites

Oak-hickory advance regeneration, Year 13, Stems 1' tall to 1" DBH

Advance regeneration, Year 13 Stems 1' tall to 1" DBH

Conclusions, Permanent Plots, Year 13

- Fire effects on stand structure:
 - Understory > Midstory > Overstory
- Fire changed the species composition of the small saplings on dry plots:
 - Shade-tolerant
 - Oak-hickory +
 - Sassafras
- Oak-hickory advance regeneration (>1' tall) was more abundant on burned sites

+

- Highly variable across landscape
- Dependent on the ABUNDANCE and SIZE of oakhickory seedlings present initially

Years 8-10: White oak decline Formation of canopy gaps

3 years since gap formed (year 11)

2 years after the last of five fires

Tree regeneration in burned and unburned canopy gaps, year 13

Attributes of gaps, year 13

Attribute	Average Unburned gaps (n = 24)	Average Burned gaps (n = 28)
Dead canopy trees	3.8 trees	4.1 trees
Area	0.05 acres	0.06 acres
Saplings/poles	331 per acre	37 per acre
% Full Sunlight	8%	18%

Saplings and poles, 1 to 8" DBH, year 13

Large advance regeneration (>2' tall), year 13

Oak-hickory, mean: 468 per acre

Oak-hickory mean: 2798 per aci

Large oak-hickory advance regeneration (>2' tall) in burned gaps

Species composition of oak advance regeneration (>30 cm tall) in burned gaps

• White oak (Quercus alba)	67%
 Black oak (Q. velutina) 	17%
• Chestnut oak (<i>Q. montana</i>)	7%
• Scarlet oak (Q. coccinea)	6%
• Northern red oak (Q. rubra)	4%

Oak seedling shading study

- White, chestnut, and red oak
- 25%, 18%, and 6% of full sunlight
- 2 years of growth and physiology measurements

Rebbeck et al. 2011. *Can J. For. Res.* Rebbeck et al. 2012. *Can J. For. Res.*

Oak seedling shading study

Seedling A_{max}: Leaf area

Seedling mass at 2-years

Root:shoot at 2-years

Rebbeck et al. 2011

When topkilled by fire...

- Red maple and yellow-poplar
 60% of seedling mass is destroyed
- Chestnut oak and northern red oak
 40% of seedling mass is destroyed
- White oak

- 25% of seedling mass is destroyed

Conclusions, Gap Study, Year 13

- Unburned gaps: Filled by shade-tolerant saplings and poles
- Burned gaps: Saplings and poles were largely eliminated
- Oak-hickory regeneration was dominant in gaps within burned stands
- White oak (*Q. alba*) regeneration may benefit most from repeated low-intensity burns – the "slow approach"

Publications from this work..

- Hutchinson, T.F., E.K. Sutherland, and D.A. Yaussy. 2005. Effects of repeated fires on the structure, composition and regeneration of mixed-oak forests in Ohio. *For. Ecol. Manag*.
- Hutchinson, T.F., Sutherland, S., Sutherland, E.K., Ortt, M., and L.R. Iverson. 2005. Prescribed fire effects on the herbaceous layer of mixed-oak forests. *Can. J. For. Res*.
- Hutchinson, T.F., R.P. Long, J. Rebbeck, E.K. Sutherland, and D.A. Yaussy. 2012. Repeated fires alter gap-phase regeneration in mixed-oak forests. *Can. J. For. Res*.
- Hutchinson, T.F., D.A. Yaussy, R.P. Long, J. Rebbeck, E.K. Sutherland. *In press*. Long-term (13-year) effects of repeated prescribed fires on stand structure and regeneration in mixed-oak forests. *For. Ecol. Manag*.

Key papers on fire effects in oak forests

- Brose, P.B., Van Lear, D.H. 1998. Responses of hardwood advance regeneration to seasonal prescribed fires in oak-dominated shelterwood stands. Can. J. of For. Res.
- Brose, P.B. et al. 2005. Responses of oak and other hardwood regeneration to prescribed fire: what we know as of 2005. In Proceedings, Fire in Eastern Oak Forests: Delivering Science to Managers. Edited by M.B. Dickinson. USDA For. Serv. Gen. Tech. Rep. NRS-P-1.
- Dey, D.C. and Z. Fan. 2009. A review of fire and oak regeneration and overstory recruitment. In Proceedings of the 3rd Fire in Eastern Oak Forests Conference. Edited by T.F. Hutchinson. USDA For. Serv. Gen. Tech. Rep. NRS-P-46.
- Arthur, M.A. et al. 2012. Refining the oak-fire hypothesis for management of oak-dominated forests in the eastern U.S. *Journal of Forestry*.

Zach Moor

Acknowledgements

- VFSEF crew
 - David Hosack
 - Bill Borovicka
 - Levi Miller
- ODNR Division of Forestry
- Wayne National Forest
- Funding: USDA Forest Service
- Technical support: Tim Fox, Joan Jolliff

Year 13, after 5 fires